
A Communication Library t o Support Concurrent Programming
Courses*

Steve Carr, Changpeng Fang, Tim Jozwowski, Jean Mayo and Ching-Kuang Shene
Department of Computer Science
Michigan Technological University

Houghton, MI 49931
Email: {carr, cfang, trjozwow, jmayo, shene}@mtu.edu

Abstract

A number of communica t ion libraries have been writ-
ten to suppor t concurrent programming. For a variety
of reasons, these libraries generally are not well-suited
for use in underg radua te courses. We have wr i t ten a
communica t ion l ibrary uniquely tai lored to an academic
environment . The l ibrary provides two levels of commu-
nicat ion abs t rac t ion (topology and channel) and sup-
por t s communica t ion among threads, processes on the
same machine, and processes on different machines, via
a unified interface. The routines facilitate controlled
message loss along channels and can be in tegra ted wi th
an existing graphical tool tha t suppor ts visualizat ion
of the communica t ion tha t occurs. An editor has been
developed for au tomat ic code generat ion for a rb i t ra ry
topologies via a graphical interface. All these tools run
over Solaris, Linux, and Windows.

1 Motivation

Concur ren t p rog ramming is increasingly fundamenta l to
underg radua te Compu te r Science educat ion [1]. Corre-
spondingly, courses dedicated to, or containing a com-
ponent in, this area are moving ever earlier into the un-
dergradua te curriculum. Yet this remains a very chal-
lenging subject to teach. Aside from the difficulty of
the material , available tools generally are not tai lored
to an academic environment .

In our experience, a significant hurdle to s tudent under-
s tanding, especially among lower-level s tudents, is the

*This work supported in part by the National S c i e n c e
Foundation under grants DUE-9752244 and DUE-9952509.
The fourth author was also supported by National Science
Foundation CAREER award CC1:t-9984862.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE '02, February 27- March 3, 2002, Covington, Kentucky, LISA.
Copyright 2002 ACM 1-58113-473-8/02/0002...$5.00.

complexi ty and diversity of communica t ion interfaces.
Students likely learn separate interfaces for synchro-
nized communica t ion among threads (lightweight pro-
cesses), processes (heavyweight processes) on the same
machine, and processes on different machines. Ano the r
difficulty faced in temching networked communica t ion
in par t icular is the in t roduct ion of message loss in some
controlled fashion.

In order to address these issues, we have developed a
l ibrary to suppor t communica t ion among threads, pro-
cesses on the same machine, or processes on different
machines, via a unified interface. These routines imple-
ment an abs t rac t ion of the p r imary overarching char-
acteristics of I P C (interprocess communicat ion) . T h e y
facilitate the s tudy of concurrent appl icat ion design and
can serve as a s ta r t ing point for s tudy of the implemen-
ta t ion of I P C within a part icular paradigm, threads,
processes on the same machine, or processes on different
machines. The l ibrary abst racts the passing of messages
at two levels: topology (the highest level) and channel.
Additionally, the routines provide a mechanism for in-
t roducing message loss in a controlled fashion. These
routines can be in tegrated into an existing visualization
sys tem tha t depicts the communica t ion tha t takes place.
A topo logy editor has been developed tha t facilitates
au toma ted generat ion of code for a rb i t ra ry topologies
using a graphical interface. The routines, visual izat ion
system, and topology editor run over Solaris, Linux, and
Windows.

2 Related Work

Arnow developed the X D P message passing l ibrary for
teaching dis t r ibuted p rog ramming [2]. The goals of this
l ibrary were more narrow t h a n our goals in developing
the tools described in this paper. The X D P l ibrary ab-
s tracts away some of the complexi ty of the BSD socket
interface, in order to reduce the course t ime required to
cover a network p rog ramming interface while requiring
tha t s tudents still address fundamenta l problems such
as buffering, race conditions, synchronizat ion, and relia-
bility. The l ibrary does not a t t emp t to provide mult iple

360

levels of abs t rac t ion, controlled message loss, or inte-
gra ted visual izat ion suppor t .

Other , commercia l ly used message passing libraries are
available, e.g. P V M and MPI . M P I is pe rhaps the
mos t widely used, and s t ruc tur ing our message passing
l ibrary a round the M P I interface (adding suppor t for
visual izat ion and main tenance of vector t ime over the
M P I primit ives) was considered. However, at the t ime
our development began, publ icly available implementa -
tions of MPI , like XDP, required t ha t the same code
be executed for each process compris ing an application.
This made it unsui table for d is t r ibuted or th readed ap-
pl icat ion development . Additionally, we did not want
to make instal lat ion and main tenance of M P I or P V M
a requirement for the use of our system.

McDonald and Kazemi have extended the P V M and
M P I message passing env i ronment to suppor t virtual
process %opologies [10]. Several core functions have also
been developed to enable a parallel p rog ram to request
use of a s t anda rd process topology, to spawn and in-
s t an t i a te all tasks par t ic ipa t ing in a topology, and to
specify t ransmission, reception, and synchronizat ion in
t e rms of logical communica t ion pa t te rns , el iminating,
for example, the need for s tudents to compu te process
identifiers. T h e y also provide a graphical interface for
specifying, verifying, and viewing topologies. Hence,
their tools are similar to wha t is achieved by our topol-
ogy classes and editor. Our tools addi t ional ly provide
controlled message loss and execut ion visualization.

3 Communication Library

Communica t ion is abs t rac ted at two levels: channel and
topology. The two abs t rac t ions are described, in turn ,
below.

C h a n n e l The goal of the channel classes is to provide
an abs t rac t ion of communica t ion t ha t ties closely to
t ha t encountered in the l i terature. Three channel types
have been implemented . The first class is a synchronous
one-to-one channel. Along this channel, b o t h send and
receive are blocking [5]. Address ing in this class, as in
all the classes, among threads is by P T h r e a d s th read
identifier 1 and among processes is by integer identifier.
Process identifiers are ei ther assigned implici t ly when
appl icat ion processes are s t a r t ed by a control process,
described later, or can be assigned explicit ly by the
user when a channel is created. No a t t e m p t is made
to prevent deadlock caused by appl ica t ion communica-
t ion pat terns , and the rout ines will block indefinitely.
Message loss cannot be in t roduced artificially into syn-
chronous channels.

1Pthreads refers to thread implementations that adhere
to the POSIX standard PI003.1c.

char msg[]="False pearls before real svine";
channell = ne~ AsynOnetoOneChannel(1,

myID,dropSome(rand()));
channell.send((void *)msg,sizeof(msg));

(a) Sender

char msg[MSGLEN];
channelO= ne~ AsynOnetoOneChannel(O,myID,O.5);
channelO.recv((void *)msg,sizeof(msg));

Figure 1:
Channel

(b) Receiver

Message Transmiss ion along Asynchronous

The second class implements an asynchronous one-to-
one channel. Along these channels, sends are non-
blocking; two receive pr imit ives are provided, one block-
ing and one non-blocking [5]. Message loss can be intro-
duced along any asynchronous one-to-one channel be-
tween processes. The loss can be specified ei ther as a
value be tween zero and one or via an integer function,
wi th a single integer input , at the t ime the channel is
created. W h e n the loss is specified as a value between
zero and one, messages will be dropped, immedia te ly
pr ior to the point at which they would be sent along
a to ta l ly reliable channel, by the communica t ion layer
according to a uni form dis t r ibut ion. W h e n loss is speci-
fied as a function, the funct ion is evaluated at this same
point immedia te ly prior to the send operat ion. If the
r e tu rn value f rom the user-suppl ied fnnct ion is grea ter
t h a n or equal to one, the message is sent, otherwise
the message is dropped. (Hence, the loss function is
directional.) Figure 1 depicts code t ha t creates a chan-
nel be tween the processes wi th identifiers zero and one;
process zero then sends a message to process one. Mes-
sages sent by process zero are d ropped according to the
function d ropSome() (which is assumed to be defined
elsewhere). Hal f the messages sent by process one (to
process zero) are d ropped according to a uni form dis-
t r ibut ion.

Imp lemen ta t i on of this code using a BSD socket inter-
face would require app rox ima te ly twice as m a n y calls
as the two (cons t ruc tor and send) required here. This
es t imate neglects the addit ional , non-tr ivial , complex-
i ty required to suppor t process addressing v ia integer
identifier and to drop messages in a controlled fashion.

The final class is a m a n y - t o - m a n y channel, and is cur-
rent ly available only for threads. This class essentially
implements a bounded buffer.

Each class has a me thod tha t allows a channel to be
queried for d a t a available to read. T h e re tu rn has a

361

theGrid = new Grid(RQWS,CDLS,myID);

if ((myID Z COLS) != 3)
theGrid.send(RIGHT,(void *)&myID,sizeof(myID));

if ((myID Z COLS) != 0)
theGrid.send(LEFT,(void *)~myID,sizeof(myID));

if (myID >= CQLS)
theGrid.send(UP,(void *)~myID,sizeof(myID));

if (myID < (RDWS-1)*COLS)
theGrid.send(DONN,(void *)~nnyID,sizeof(myID));

Figure 3: H i s to ry Window

Figure 2: Exchange of ID A m o n g Gr id Neighbors

value of one when d a t a is available, bu t has no effect on
the channel itself. If no message is available, the r e tu rn
value is zero.

Vector t ime is ma in t a ined wi th in user appl icat ions. Vec-
tor t ime is used to de te rmine the happened-be fo re re-
la t ion [8] among events t h a t occur wi th in a d i s t r ibu ted
c o m p u t a t i o n [9]. Users can query, and increment the lo-
cal c o m p o n e n t of, the current local vector t ime wi th in
an appl icat ion.

T o p o l o g y One- to-one channels can be joined into
topologies. T h e p r i m a r y funct ion of the topo logy class
is to faci l i tate crea t ion of mul t ip le channels via ins tan-
t i a t ion of a single class. Several s t anda rd topologies,
derived f rom the topo logy class, axe also p rov ided in-
cluding: ful ly-connected, s tar , l inear array, ring, grid,
and torus . Message sends arid receives axe res t r ic ted
to di rect ly connec ted nodes wi th in the topology. For
example , the center node of a s ta r ne twork is the only
node able to send to, and receive from, outer nodes;
ou te r nodes can only send to, and receive from, the
center node. Topologies are bui l t wi th reliable a~yn-
chronous channels. F igure 2 depicts exchange of iden-
tifiers a m o n g all neighbors in a grid topology. Note
t h a t macros RIGHT,LEFT,UP,DOWN axe defined wi th in
our system. Similar macros are defined as app rop r i a t e
to a given topology.

W i t h i n the topo logy class, and each s t anda rd topol-
ogy, the m e t h o d s S e n d () , R e c e i v e () , B r o a d c a s t () ,
S c a t t e r () , G a t h e r () , and R e d u c e () are provided.
The Send (Receive) routine sends (receives) a mes-

sage to (from) a specified process. Broadcast effects

a broadcast, to all processes, of a specified message

from a specified source process. Scatter partitions an

input block of data, from a specified source process,

into a number of pieces equal to the number of pro-

cesses and sends a unique piece to each of the applica-

tion processes. Gather complements Scatter and col-

lects data from application processes to the process with

a specified identifier. A Reduce method collects data

f rom each appl ica t ion process and s tores the result in
a specified locat ion. T h e user specified funct ion is t hen
run to reduce the collected da ta . S c a t t e r , G a t h e r ,
and Reduce cur ren t ly ope ra t e on one-d imens ional ar-
rays (consecut ive s torage) . Suppo r t for opera t ions on
some non-consecut ive s torage in two-dimensional ar rays
(e.g., subma t r i x) is under deve lopment .

I m p l e m e n t a t i o n Appl ica t ions compr i sed of mul t ip le
processes are spawned v ia a cent ra l control process.
Specif icat ion of the user p rog rams and the machines on
which they should execute takes place ei ther v ia the
c o m m a n d line or f rom user-specified conf igurat ion files.
T h e control process also spawns the visual izat ion pro-
cess, when requested. Visual iza t ion d a t a is passed along
T C P channels be tween the user processes and the visu-
a l izat ion process. W h e n channels (or topologies) are
used, a T C P connect ion be tween the user processes is
c rea ted to effect a channel. Hence, the control process is
not involved in communica t ions be tween user processes.

4 Topology Editor

A topo logy edi tor has been crea ted to faci l i ta te r ap id
deve lopment of complex topologies v ia a graphical inter-
face. T h e edi tor allows crea t ion of connect ions among
single nodes or among topologies. T h e edi tor o u t p u t
is a file containing specif icat ion of a class der ived f rom
the topo logy class. (The der ived class n a m e can op-
t ional ly be specified by the user.) T h e interface for this
class is e q u i w l e n t to t h a t for the topo logy class. Th is
file can be included by the user in her code to easily
crea te the cons t ruc ted topology. T h e der ived class sup-
por t s b roadcas t , scat ter , ga ther , and reduce funct ions
for each cus tom topology.

5 Visualization

A visual iza t ion sy s t em has been developed for visualiz-
ing synchron iza t ion a m o n g the th reads of an execut ing
appl ica t ion [3]. This sys t em h.as been ex tended to de-
pict the commun ica t i on t h a t occurs a m o n g th reads or
a m o n g processes. This v isual iza t ion is linked to use of

362

the channel class, and hence is available when the chan-
nel, topology, and specific topology classes are used.

A History Graph window (see figure 3) depicts the sends
and receives t ha t occur wi thin each process or thread,
and connects corresponding send and receive opera t ions
between threads or processes. Clicking on any channel
in this window opens the Channel window. This win-
dow displays all recent act iv i ty along this channel, in-
cluding channel type, messages in the channel, messages
received since the window was opened, and current sta-
tus, ei ther Sending Message or Receive Message.

6 Experience

The channel classes closely follow the abs t rac t ions of
communica t ion found in the l i te ra ture and they are eas-
ily incorpora ted into exist ing assignments. The i r use
provides the addi t ional advan tage of allowing s tudents
to visualize the communica t ion t ha t takes place.

w i t h 1 - n e w SynOneTnOneChannel(1,0);

neg.veLlue - mmx(mySet);
oentValue~mog.valuo
v i * h l - s u n d ((v u i d e)meKjs£zeo f (msK)) ;
Ee~ovo(mySe~,msK.va lue) ;
w ± ~ h l . r e c v ((v u i d *)ms~,s~zeofCmeg)) ;
add(mySet ,ms~.va lue) ;

} while (sen~Vs/ue • ms~.velue);

m s ~ . d o n e ~ l ;

v * t h l . s e n d ((v o t d *)msE.s±zeof(meE));

(a) Solution for Process Zero
~IthO - new SDQ~eToOneChaanel(O,l);

ui~hO.recv((vnid ~)ms~,e~zeof(~s~));
if (mB.done "" 0){

add(mySet~s~.value);
meE.value - min(mySet);
wSthO.eend((voSd *) m s E , e i z ~ o f (m e ~)) ;
remove(mySe~,meE.value);

} while (~s~.doneffi~O);

(b) Solution .for Process One

Figure 4: Set Par t i t ion

We present a sequence of exercises t ha t result f rom
our experience with teaching network p r o g r a m m i n g over
the pas t several years in an upper- level unde rg radua te
course. These exercises were recent ly developed to serve
as the first set of network p r o g r a m m i n g exercises. Ini-
tially, our first ne twork p r o g r a m m i n g ass ignment was
more complex. We typical ly required an appl icat ion
t ha t contained mult iple clients and a server for all client
types, s imilar to t ha t described in [4]. While they re-
por t large-scale success, we have found tha t , while m a n y
s tudents are able to complete the assignment, a signif-
icant number of s tudents have difficulty. We hope t ha t
comple t ion of these exercises will lead to greater success

in the more complex client server exercise.

This set of exercises was designed to demons t r a t e three
fundamenta l aspects of concurrent appl icat ion design:
(1) the use of synchronous versus asynchronous com-
municat ion, (2) determinis t ic versus non-determinis t ic
communica t ion , and (3) the use of a client-server ar-
chi tecture versus a fully d is t r ibuted one. The basis of
the exercises is Sounda ra r a j an ' s CSP [7] implementa -
t ion [11] of a set par t i t ion ing p rob lem [6]. The p rob lem
is to par t i t ion a set of integers into two sets according
to the element values. Each process (heavyweight or
lightweight) initially has half of the set. One process
P0 will end up wi th the lower half of the elements and
the other process P1 ends up wi th the uppe r half of the
elements.

The first exercise requires tha t the p rob lem be solved
using synchronous message passing. P0 sends the max-
i m u m value max(So) f rom its set So to P1 and removes
max(So) f rom So. Po t hen waits to receive the m i n i m u m
value rain(S1) f rom the set $1 of P1. This continues un-
til P0 receives a value t ha t is greater t h a n or equal to
the one it sent.

Upon receiving a value f rom P0, P1 adds the received
value to $1. P1 then sends rain(S1) to Po and removes
rain(S1) f rom its set. This continues until P0 notifies P1
t ha t the set is par t i t ioned. A solution is given in figure
4. This exercise i l lustrates development of a s imple ap-
pl icat ion protocol . (Po and P1 mus t agree on the fo rmat
of messages, and agree on a sentinel message t h a t lets
-P1 know tha t no fur ther messages will be sent.) I t also
serves to familiarize s tudents wi th the (synchronous)
message passing interface.

¢~x.~' ~: ~ r ~ l i L~,lmi ~

i ~ 2 ~ - ~ : ! ! ~ : = : - - ~ ~ : = : : f ~ ' ~ ' ° ~ ...

.~j ~._~.,

I

1
T I
I

Figure 5: Simul taneous Synchronous Sends - His tory
Window

The second exercise requires a solution similar to t ha t
for exercise one, wi th the except ion tha t , at each step,
Po and -Pl send their m a x i m u m and m i n i m u m values,
respectively, s imultaneously. W h e n P0 (P1) receives a
value less t h a n (greater than) the one it sent out, the
sent value is removed f rom its set and the received value
is added. W h e n P0 (P1) receives a value greater t h a n
(less than) the one it sent out, the par t i t ion is comple te
and no set modif icat ions are made . We do not specify

363

the use of a par t icu lar channel class. Development of a
solution requires tha t s tudents come to the realizat ion
tha t only asynchronous message passing facili tates si-
mul taneous execut ion of a send by b o t h P0 and P1- If
synchronous communica t ion is chosen by the s tudent ,
the problem quickly presents itself wi thin the visualiza-
t ion system, as depicted in figure 5.

T h e final exercise of this sequence incorpora tes N pro-
cesses with por t ions of the set and requires a central-
ized solution. Students use a supplied non-determinis t ic
receive funct ion (or can create this funct ion for them-
selves) t ha t listens for d a t a on any incoming channel.
A server collects a set of integers f rom all clients, com-
putes the set par t i t ion, and re turns the result ing sets to
the clients.

7 Conclusions and Future Work

We have developed a message passing l ibrary t ha t pro-
vides two levels of abst ract ion, channel and topology,
for the communica t ion tha t occurs among processes
and threads. T igh t ly in tegra ted visual izat ion suppor t
is available, as is suppor t for controlled message loss. A
topo logy edi tor allows deve lopment of cus tom topolo-
gies via a graphical interface. We ant ic ipate tha t these
communica t ion classes and associated tools will suppor t
the ins t ruc t ion of concurrent p rogramming by reducing
the overhead associated with learning message passing
interfaces, by providing a uniform interface for commu-
nicat ion bo th among threads and among processes, and
by providing in tegra ted visual izat ion suppor t wi thou t
the need for ins t rument ing user programs.

These message passing classes are pa r t of a larger sys-
t em tha t provides a class l ibrary for threads , th read
synchronizat ion, and message passing. The sys tem
cur ren t ly also has suppor t for visualizing the synchro-
nizat ion of threads and the message passing tha t oc-
curs among threads and processes. We axe current ly
adding suppor t for synchroniza t ion of processes (bar-
r ier and mutua l exclusion), implement ing well-known
parallel and d is t r ibuted algorithms, adding suppor t for
d i s t r ibu ted arrays, and adding addit ional visual izat ion
suppor t specifically for parallel and d is t r ibuted pro-
gramming. We believe the tools can be used at any
level in which s tudents have the p rogramming sophisti-
cat ion and background sufficient to cover concurrency.
We have t augh t th read and network p rogramming in a
course popu la ted p redominan t ly by sophomores and ju-
niors. T h e sys tem has not been used at a lower level.
Comprehensive , detai led informat ion on our work is
available at http ://www. cs.mtu, edu/-shene/NSF-3/
index, html.

References

[1] ACM. Comput ing Curr icula 2001 (Steelman Draft ,
August 1, 2001). h t t p : / / ~ r ~ r a . a c m . o r g / s i g s /
sigcse/cc2001/steelman/, 2001.

[2] Arnow, D . M . A simple l ibrary for teaching
a d is t r ibuted p rogramming module. In Twenty-
Sixth SIGCSE Technical Symposium on Computer
Science Education (Nashville, Tennessee, Max.2-4
1995), pp. 82-86.

[3] Bedy, M., Caxr, S., Huang, X., and Shene, C.-K.
A visual izat ion sys tem for mul t i th readed program-
ming. In Proceedings off the 31st Annual SIGCSE
Technical Symposium on Computer Science Educa-
tion (Austin, TX, March 2000), pp. 1-5.

[4] Bryant , R. E., and O'Hallaxon, D. R. In t roduc ing
compute r systems from a p rogrammer ' s perspec-
tive. In Proceeding of ~he Thirty-second SIGCSE
Technical Symposium on Computer Sciense Edu-
c~'ion (SIGCSE-01) (New York, Feb.21-25 2001),
pp. 9O-94.

[5] Coulouris, G., Dollimore, J., and Kindberg, T. Dis-
tributed Systems Concepts and Design, th i rd ed.
Addison-Wesley, 2001.

[6] Dijkstra, E. W. A correctness proof for networks of
communica t ing sequential processes - a small exer-
cise. EWD-607, 1977.

[7] Hoaxe, C. Communica t ing sequential processes.
Commun. A C M ~1, 8 (1978), 666-677.

[8] Lampor t , L. Time, clocks, and the order ing of
events in a d i s t r ibu ted system. Commun. A C M
P1, 7 (1978), 558-565.

[91 Mat te rn , F. Vi r tua l t ime and global s tates of dis-
t r i bu t ed systems. In Parallel and Distributed Algo-
rithms: Proceedings of the International Workshop
on Parallel and Distributed Algorithms, M. C. et.
al., Ed. Elsevier Science Publ ishers B. V., 1989,
pp. 215-226.

[10] McDonald, C., and Kazemi, K. Teaching paral-
lel a lgori thms wi th process topologies. In Thirty-
first SIGCSE Technical Symposium on Computer
Science Education (Austin, Texas, Max.7-12 2000),
pp. 70-74.

[11] Soundara ra jan , N. Axiomat ic semantics of com-
munica t ing sequential processes. A C M Transac-
tions on Programming Languages and Systems 6, 4
(1984), 647-662.

364

